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Abstract

Here is my midterm review sheet for MIT’s Measure Theory and Integration (18.125), Spring 2023. This

may contain typos and occasional mistakes, as it was written during my midterm prep. This note only

covers the course’s first half, not the applications (Functional Analysis, Fourier analysis, etc.). So, don’t

study just this note for the final preparations, as you will be woefully under-prepared. Feel free to copy

and distribute under the MIT license, but I would appreciate it if you give me credit! Please report typos

and errors to notadib@mit.edu.

1 Introduction

1.1 Sigma Algebra

Let E be a set. A σ-algebra on E, called E , is a subset of P (E) with the following properties:

• ∅ ∈ E

• ∀A ∈ E , we have E\A ∈ E .

• For distinct (An)n∈N ∈ E , we have
⋃

n∈N An ∈ E .

(E, E) is called a measurable space and subsets of E are called measurable sets.

Properties

• For (An)n∈N ∈ E , we have
⋂

n∈N An ∈ E (follows from the 3rd property above).

• If A,B ∈ E , then we have A ∩B ∈ E and A ∪B ∈ E .

• (Ei)i∈I is a countable family of σ-algebras, then
⋂

i∈I Ei is a σ-algebra (check three properties above).
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Remarks

• Let C ∈ P (E). The σ-algebra generated by C, called σ(C), is the following:

σ(C) =
⋂

{E|E is σ-algebra on E and C ∈ E}

• To prove every A ∈ σ(C) satisfies some property p(A), first show that ∀A ⊆ C, p(A) holds and {A ∈
σ(C)|p(A) holds} is a σ-algebra.

1.2 Measure, Borel Measure, Lebesgue Measure, Probability Measure

Measure: Let (E, E) be a measurable space. A measure µ on (E, E) is a function µ : E → [0,∞] such that

• µ(∅) = 0

• If (An)n≥0 is a countable family of distinct elements of E, then

µ

( ∞⋃
n=0

An

)
=

∞∑
n=0

µ(An)

Furthermore (E, E , µ) is called a measured space.

Properties:

1. If A,B ∈ E are disjoint, then µ(A ∪B) = µ(A) + µ(B).

2. If A,B ∈ E and A ⊆ B, then µ(A) ≤ µ(B).

3. If (An)n≥0 is an increasing sequence of measurable sets, that is An ⊆ An+1, then

µ

⋃
n≥0

An

 = lim
n→∞

µ(An)

4. If (An)n≥0 is a decreasing sequence of measurable sets, that is An+1 ⊆ An, and µ(A0) < ∞ then

µ

⋂
n≥0

An

 = lim
n→∞

µ(An)

5. (Borel-Cantelli Lemma) If (An)n≥0 is a sequence of measurable sets such that
∑∞

n=0 µ(An) < ∞, then

µ

⋂
n≥0

⋃
k≥n

Ak

 = 0

Borel Measure: Let E = {(−∞, a]; a ∈ R}. It’s easy to show that σ(E) contains all open intervals of R and

is called the Borel σ-algebra of R. It is written as B(R).

In general, B(X) = σ(T ) where T = {Open sets of X}. Any measure µ on (X,B(X)) is called a Borel

measure on X.
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Regularity of Borel Measure: Let (X, d) be a metric space and µ be a finite Borel measure on (X, d).

Then, for every A ∈ B(X) and ε > 0, there is a closed set F and an open set U such that F ⊆ A ⊆ U and

µ(U\F ) ≤ ε. In other words, we can approximate Borel measurable sets arbitrarily closely with an open set

and a closed set.

For proof consider E to be the set of sets that satisfy the given properties and then show E is a sigma-algebra

and it contains all the open sets of B(X).

Lebesgue Measure: Let µ be a Borel measure on R. Then the following properties are equivalent:

1. For every a < b, µ((a, b]) = b− a

2. µ([0, 1]) = 1 and µ is invariant by translation.

There is a unique Borel measure on R satisfying 1 and 2. This unique measure is called the Lebesgue measure

on R and is written as λ. Note that showing the existence of λ requires Axiom of Choice.

Probability Measure: A measure µ on a measurable space (E, E) such that µ(E) = 1. Note that due to

the monotonicity of measure, this means for any X ∈ E , we have 0 ≤ µ(X) ≤ 1, and µ(X) is called the

probability of event X.

1.3 Pi System and Lambda System

Let E be a set and E ⊆ P (E). We say that E is a Π-system if

• E ∈ E

• ∀A,B ∈ E , we have A ∩B ∈ E .

We say that E is a Λ-system if

• E ∈ E

• ∀A,B ∈ E and A ∩B = ∅, we have A ∪B ∈ E .

• If A,B ∈ E and A ⊆ B, then B\A ∈ E .

• If (An)n≥0 is an increasing sequence of elements of E , then
⋃

n≥0 An ∈ E .

We need these constructions because it is sometimes easier to prove that a family of sets is either a Π-system

or a Λ-system than σ-algebra. Then we have the following important results:

Lemma 1. Let E be a set and E ⊆ P (E). If E is both a Π-system and a Λ-system, then E is a σ-algebra.

Lemma 2. Let E be a set and Π ⊆ P (E) be a Π-system on E. Then Λ(Π) is a σ-algebra.

For the proof, use the above properties of the Π-system and a Λ-system along with the properties of measures

to check for the requirements to be a sigma-algebra.
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1.4 Measurable Functions

Measurable Map: Let (E, E) and (E′, E ′) be measurable spaces and f : E → E′ be a function. We say f

is measurable if ∀A ∈ E ′ =⇒ f−1(A) ∈ E .

Random Variable: If (E, E) is a probability space, then f is called a random variable.

Simple Function: A measurable function s : E → [0,∞] is called a simple function if it can be written as

s(x) =

n∑
k=0

akχAk
(x),

where ak ∈ [0,∞] and Ak ∈ E and are disjoint, and χAk
is the characteristic function defined by

χAk
(x) =

{
1 if x ∈ Ak,

0 if x /∈ Ak.

We denote the set of simple functions by S+.

1.5 Lebesgue Integration

Simple functions: Continuing the previous notations for simple functions, the integral for s over set A ∈ E
is defined as ∫

A

sdµ =

n∑
k=0

akµ(A ∩Ak)

For a general measurable function f , Lebesgue integration over a set A ∈ E is defined as follows:∫
A

fdµ = sup
s∈S+,s≤f

∫
A

sdµ

Some properties:

• f ≤ g =⇒
∫
A
fdµ ≤

∫
A
gdµ

• µ(A) = 0 =⇒
∫
A
fdµ = 0

•
∫
E
χAfdµ =

∫
A
fdµ.

2 Three Big Convergence Results

2.1 Monotone Convergence Theorem

Let f : E → [0,∞] be a measurable function and (fn)n≥0 be a sequence of measurable functions such that

for all x ∈ E and for all n ∈ N, fn(x) ≤ fn+1(x) and limn→∞ fn(x) = f(x). Then, for all A ∈ E ,∫
A

f dµ =

∫
A

lim
n→∞

fn dµ = lim
n→∞

∫
A

fn dµ.

Proof Idea: Let L = limn→∞
∫
A
fn dµ. From the definition of the integral and the monotonicity of the

integrals, L ≤
∫
A
fdµ.

4



To show the other side, use simple functions. Take a simple function s ≤ f and a fixed a such that 0 < a < 1.

For each n, define An = {x|fn(x) ≥ as(x)}. Since fn+1 ≥ fn, An is an increasing family. Furthermore, f ≥ s

by definition and limn→∞ fn = f . Thus, ⋃
n≥0

An = E

We integrate fn on Ans. We know that
∫
An

fndµ ≥ a
∫
An

sdµ. Taking n → ∞,∫
E

fndµ ≥ a sup
s≤f

∫
E

sdµ = a

∫
E

fdµ

2.2 Fatou’s Lemma

Let (fn)n≥0 be a sequence of non-negative measurable functions on a measure space (E, E , µ). Then,∫
E

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
E

fn dµ.

Proof Idea: Use monotone convergence theorem on gn = infm≥n fn. The inequality comes from the

monotonicity of integrals. We need MCT to ensure that the RHS actually has a limit.

2.3 Dominated Convergence Theorem

Let (E, E , µ) be a measure space and fn : E → R be a sequence of measurable functions that converge

pointwise to a function f on µ-almost everywhere. Suppose there exists a g ∈ L1(E, E , µ) such that for

µ-almost everywhere, |f(x)| ≤ g(x) and |fn(x)| ≤ g(x) for all n ∈ N and all x ∈ E. Then,

lim
n→∞

∫
E

fn dµ =

∫
E

f dµ.

Proof Idea: Define hn = (2g − |f − fn|), which is non-negative due to triangle inequality. Then apply

Fatou’s lemma.

3 Product Measures

Let (E1, E1) and (E2, E2) be two measure spaces. The product σ-algebra is defined by

E1 ⊗ E2 = σ({A×B|A ∈ E1, B ∈ E2})

3.1 Fubini’s Theorem

Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces, and let f : X × Y → R be a measurable function. If

f is integrable with respect to the product measure µ× ν, then∫
X×Y

f d(µ× ν) =

∫
X

(∫
Y

f(x, y) dν(y)

)
dµ(x) =

∫
Y

(∫
X

f(x, y) dµ(x)

)
dν(y).
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3.2 Tonelli’s Theorem

Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces, and let f : X × Y → [0,∞] be a non-negative

measurable function. Then∫
X×Y

f d(µ× ν) =

∫
X

(∫
Y

f(x, y) dν(y)

)
dµ(x) =

∫
Y

(∫
X

f(x, y) dµ(x)

)
dν(y).

3.3 General Change of Variables Formula

Let U and V be open subsets of Rd and Φ : U → V be a C1 bijection such that the Jacobean JΦ(x) ̸= 0∀x ∈ U .

Then if f : U → [0,∞] is measurable, then∫
U

f(Φ)dλRd =

∫
V

f(y)JΦ−1(y)dλRd

4 Inequalities

4.1 Markov’s Inequality

Let g : E → [0,∞] be integrable. Then for λ > 0, we have

µ({g ≤ λ}) ≤ 1

λ

∫
E

g · dµ

4.2 Hölder’s Inequality

Let p, q ∈ [1,∞] such that 1
p + 1

q = 1. Let (E, E , µ) be a measure space and f, g : E → [0,∞] be measurable

functions. Then, ∫
E

f(x)g(x) dµ(x) ≤
(∫

E

f(x)p dµ(x)

) 1
p
(∫

E

g(x)q dµ(x)

) 1
q

.

Equality holds if and only if fp and gq are proportional, i.e., fp = λgq for some λ ≥ 0.

4.3 Jensen’s Inequality

Let (E, E , µ) be a measure space, f : E → R be a measurable function, and φ : R → R be a convex function.

Then, for any f ∈ L1(E, E , µ),

φ

(∫
E

f dµ

)
≤
∫
E

φ(f) dµ.

Equality holds if and only if f is almost surely constant or φ is affine.

5 Different Notions of Convergence

aaaah.....
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